Er Manish Bhadoria's
 sos)Interactions
 Strong Foundation for a Bright Future

Address: Nimbalkar's Goth -2 , Near Balaj Travels Office, Kampoo, Lashkar, Gwalior

Ph: 6450282, 2424758 Mob: 9229497622

Mathematics

(Answers and Solutions to Sample Paper - I)

This sheet contains answers and solutions to the Mathematics sample paper 01 published on www.cbseguess.com on $25-01-2010$. Please note that many problems are solved only in short.

Answers

1. Prime factorisation of q must be of the form $2^{n} 5^{m}$, where n and m are non-negative integers.
2. Only 1 zero.
3. $(3,4),(6,2)$ and $(0,2)$

AP is $2,7,12,17, \ldots \ldots$.
Sum of first fifteen terms $=555$
3. $9: 1$
4. ± 4
5. $1 / 2$
6. $\mathrm{n}=25$
7. $3: 1: 2$
8. 60°
20. ---
21. $3: 4$
22. $(-7,0)$, area $=53$ sq. units
23. ---
24. 5.7 cm
25. $42 \mathrm{~cm}^{2}$

Choice

$38.28 \mathrm{~cm}^{2}$
26. 27 years and 5 years

Choice

$42 \mathrm{~km} / \mathrm{h}$
11. $x=3, y=2$
12. -2
13. 31 square units
14. ---
15. (i) $1 / 2$, (ii) $5 / 6$ Choice
(i) $1 / 11$, (ii) $2 / 3$
16. -, 3
27. -

Choice

Distance $=10 \sqrt{ } 3 \mathrm{~m}$,
Height of other tower $=10 \mathrm{~m}$
28. ---
29. $720 \mathrm{~cm}^{2}$
30. Mean $=38.8$

Median $=38.57$
17. (i) $-7 / 4$, (ii) $-115 / 32$

Address: Nimbalkar's Goth - 2, Near Balaji Travels Office, Kampoo Lashkar, Gwalior Ph: 6450282, 2424758 Mob: 9229497622

Hints / Solutions

1. ---
2. The graph intersects the x-axis at only one point.
3. $\triangle \mathrm{ABC} \sim \triangle \mathrm{ADE}$
$\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle A D E)}=\frac{A B^{2}}{A D^{2}}=\frac{3^{2}}{1^{2}}=\frac{9}{1}$ Ans
4. For equal roots:

D = 0
$b^{2}-4 \mathrm{ac}=0$
$\mathrm{k}^{2}-4.1 .4=0$
$\mathrm{k}^{2}=16$
$\mathrm{k}= \pm 4$ Ans
5. $\tan \mathrm{A}=1$
$\therefore \mathrm{A}=45^{\circ}$
$\sin \mathrm{A} \cos \mathrm{A}=\sin 45^{\circ} \cdot \cos 45^{\circ}=\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}=\frac{1}{2}$ Anc
6. $\mathrm{a}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}=141$ (given)

$$
-3+(n-1) 6=141
$$

After solving: $\mathrm{n}=25$ Ans
7. Let radius of each $=r$ (same bases given)
height of hemisphere is equal to its radius
\therefore height of each $=r$ (same heights given)
Vol of cylinder : Vol of cone : Vol of hemisphere
$\pi(\text { (radius })^{2}($ height $): \frac{1}{3} \pi(\text { (radius })^{2}($ height $): \frac{2}{3} \pi(\text { radius })^{3}$
$\pi \mathrm{r}^{3}: \frac{1}{3} \pi \mathrm{r}^{3}: \frac{2}{3} \pi \mathrm{r}^{3}$
3:1:2 Ans
8. $\angle \mathrm{PTQ}=120^{\circ}$
quad. POQT is a cyclic quadrilateral.
$\therefore \angle \mathrm{POQ}+\angle \mathrm{PTQ}=180^{\circ}$
$\angle \mathrm{POQ}=180^{\circ}-120^{\circ}=60^{\circ}$ Ans

9. There are two red queens in a pack (diamond and hearts)
$P($ red queens $)=\frac{2}{52}=\frac{1}{26}$ Ans
10.

class	frequency	Cumulative frequency
$0-5$	5	5
$5-10$	9	14
$10-15$	12	26
$15-20$	18	44
$20-25$	6	50

$\mathrm{n}=50, \frac{n}{2}=25$
median class = class whose cumulative frequency is greater than and
nearest to $\frac{n}{2}$.
\therefore median class is $(10-15)$ Ans
11. Let $\frac{1}{y}=z$

Then equations are:
$4 x+6 z=15$
$6 x-8 z=14$
Solving these, we get $\mathrm{x}=3, \mathrm{z}=\frac{1}{2}$
$\mathrm{y}=\frac{1}{z}=2$
$\therefore \mathrm{x}=3, \mathrm{y}=2$ Ans
12. ---
13. $\operatorname{ar}($ quad. $A B C D)=\operatorname{ar}(\triangle A B C)+\operatorname{ar}(\triangle A D C)$
using formula for area of triangle:
$\Delta=1 / 2\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$
$\operatorname{ar}(\Delta \mathrm{ABC})=\frac{39}{2}$ sq. units
$\operatorname{ar}(\triangle \mathrm{ADC})=\frac{23}{2}$ sq. units

$\therefore \operatorname{ar}($ quad. ABCD$)=\frac{39}{2}+\frac{23}{2}$
$=\frac{62}{2}=31$ sq. units. Ans
14. $\frac{A D}{D B}=\frac{A E}{E C}$
$\therefore \mathrm{DE} \| \mathrm{BC}$ (converse of BPT) $\angle \mathrm{ADE}=\angle \mathrm{ABC}$ (corresponding angles) But $\angle \mathrm{ADE}=\angle \mathrm{ACB}$ (given)
$\therefore \angle \mathrm{ABC}=\angle \mathrm{ACB}$
$\therefore \mathrm{AB}=\mathrm{AC}$ (sides opposite to equal

angles of a triangle are equal)
So, $\triangle \mathrm{ABC}$ is an isosceles triangle. Prowed
15. (i) prime numbers on a die: $2,3,5$ (total three)
$P($ prime number $)=\frac{3}{6}=\frac{1}{2}$ Ams
(ii) numbers less than 6: 1, 2, 3, 4, 5 (total 5)
$P($ number $<6)=\frac{5}{6}$ And

Choice

(i) cards removed: 13 diamonds, 4 queens, 4 jacks.

Queen and Jack of diamond are common in these.
\therefore total cards removed
$=13+4+4-2=19$
Remaining cards $=52-19=33$
Face cards in a pack: 4 Kings +4 Queens +4 Jacks $=$ total 12
Removed $=4$ Queens, 4 Jacks and 1 King (of diamond)
\therefore face cards remain $=12-9=3$
P (face card $)=\frac{3}{33}=\frac{1}{11}$ Ans
(ii) black cards removed $=4$ (two black Queens and two black Jacks)
\therefore black cards remain $=26-4=22$
$\mathrm{P}($ black card $)=\frac{22}{33}=\frac{2}{3}$ Ans
16. ---
17. $\alpha+\beta=\frac{5}{2}, \alpha \beta=4$
(i) $\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta=\left(\frac{5}{2}\right)^{2}-2 \times 4=\frac{25}{4}-8=-\frac{7}{4}$ Anc
(ii) $\frac{\alpha^{2}}{\beta}+\frac{\beta^{2}}{\alpha}=\frac{\alpha^{3}+\beta^{3}}{\alpha \beta}$
$=\frac{(\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta)}{\alpha \beta}$
$=-\frac{115}{32}$ Ans
18. Vertices of the triangle are $(3,4),(6$,
$2)$, and (0,2).

19. Let the AP be a, $a+d, a+2 d, \ldots$.
$\mathrm{a}_{8}=\mathrm{a}+7 \mathrm{~d}=37$
$\mathrm{a}_{15}=15+\mathrm{a}_{12}$
$a+14 d=15+a+11 d$
solving, $\mathrm{d}=5$
then, $\mathrm{a}+7 \mathrm{~d}=\mathrm{a}+7 \times 5=37$
$\Rightarrow \mathrm{a}=2$
\therefore AP is $2,7,12,17, \ldots$. . Ans
$\mathrm{S}_{15}=\frac{15}{2}[2 \times 2+(15-1) 5]=555$ And
20. LHS $=\sqrt{\frac{\sec \theta-1}{\sec \theta+1}}+\sqrt{\frac{\sec \theta+1}{\sec \theta-1}}=\frac{(\sec \theta-1)+(\sec \theta+1)}{\sqrt{\sec ^{2} \theta-1}}=\frac{2 \sec \theta}{\tan \theta}$.

$$
=\frac{2 / \cos \theta}{\sin \theta / \cos \theta}=\frac{2}{\sin \theta}=2 \operatorname{cosec} \theta=\text { RHS }
$$

To prove: $\frac{\sin \theta}{\cot \theta+\operatorname{cosec} \theta}=2+\frac{\text { Choice }}{\sin \theta} \cot \theta-\operatorname{cosec} \theta \quad$

[^0]Lashkar, Gwalior Ph: 6450282, 2424758 Mob: 9229497622
or, to prove: $\frac{\sin \theta}{\cot \theta+\operatorname{cosec} \theta}-\frac{\sin \theta}{\cot \theta-\operatorname{cosec} \theta}=2$
LHS
$=\sin \theta\left[\frac{\cot \theta-\operatorname{cosec} \theta-\cot \theta-\operatorname{cosec} \theta}{\cot ^{2} \theta-\operatorname{cosec}} \theta\right]$
$=\sin \theta\left[\frac{-2 \operatorname{cosec} \theta}{-1}\right]$
$=2 \sin \theta \operatorname{cosec} \theta=2=$ RHS
21. Let the line $3 x+y-9=0$ divides the line segment joining the points $(1,3)$ and $(2,7)$ in the ratio $\mathrm{m}_{1}: \mathrm{m}_{2}$ at point (x, y).
Then by section formula,
$\mathrm{x}=\frac{2 m_{1}+m_{2}}{m_{1}+m_{2}}, \mathrm{y}=\frac{7 m_{1}+3 m_{2}}{m_{1}+m_{2}}$

point (x, y) lies on line $3 x+y-9=0$.
So, it will satisfy the equation.
$3\left[\frac{2 m_{1}+m_{2}}{m_{1}+m_{2}}\right]+\left[\frac{7 m_{1}+3 m_{2}}{m_{1}+m_{2}}\right]-9=0$
Solving, $\mathrm{m}_{1}: \mathrm{m}_{2}=3: 4$ Ans
22. Let that point on x axis be $(\mathrm{x}, 0)$.

Then, $\sqrt{(x-2)^{2}+(0+5)^{2}}=\sqrt{(x+2)^{2}+(0-9)^{2}}$
Solving, $\mathrm{x}=-7 \Rightarrow$ point is $(-7,0)$.
Area of triangle can be found by the formula used in question 13.
$\Delta=53$ sq. units Ans
23. ---
24. Lengths of tangents drawn from an external point to a circle are equal.
$\therefore A Q=A R$
$A B+B Q=A C+C R$
$4.4+\mathrm{x}=4+3-\mathrm{x}$
$\mathrm{x}=1.3 \mathrm{~cm}$
so, $\mathrm{AQ}=4.4+1.3=5.7 \mathrm{~cm}$ Ans

25. Area of shaded region $=$ area of square - area of four quadrants of circle $=(14)^{2}-4 \times \frac{1}{4} \pi(7)^{2}=42 \mathrm{~cm}^{2}$ Anc

Choice

Total area $=$ area of rectangle + area of semicircle
$=(8 \times 4)+1 / 2 \pi(2)^{2}=38.28 \mathrm{~m}^{2}$ Ans

26. Let Asha (Mother) is x years old and Nisha (Daughter) is y years old presently.
Then, according to the problem -
$x=y^{2}+2 \ldots \ldots$. (i)
Difference in their ages $=(x-y)$ years.
So, Daughter will grow to her mother's present age after ($x-y$) years.
At that time: Mother's age $=x+(x-y)=2 x-y$ and Daughter's age $=x$
Now, According to the problem-
$2 \mathrm{x}-\mathrm{y}=10 \mathrm{y}-1$
Substituting for x from eqn. (i)
$2\left(y^{2}+2\right)-11 y+1=0$
$2 y^{2}-11 y+1=0$
On solving this quadratic equation, we get $y=5$ and $y=1 / 2$
$y=1 / 2$ is not acceptable because ages are in years.
$\therefore \mathrm{y}=5$ and $\mathrm{x}=\mathrm{y}^{2}+2=27$
So, Asha's age $=27$ years and Nisha's age $=5$ years. Ans

Choice

Time $=\frac{\text { distance }}{\text { speed }}$
Let the usual speed of train be $x \mathrm{~km} / \mathrm{h}$
For first part of journey: distance $=63 \mathrm{~km}$, speed $=x \mathrm{~km} / \mathrm{h}$
\therefore time taken $=\frac{63}{x} \mathrm{~h}$
For second part: distance $=72 \mathrm{~km}$, speed $=(x+6) \mathrm{km} / \mathrm{h}$
\therefore time taken $=\frac{72}{x+6}$ h.
According to the problem -

Total time taken $=3 \mathrm{~h}$
$\frac{63}{x}+\frac{72}{x+6}=3$
This simplifies into quadratic equation: $x^{2}-39 x-126=0$.
on solving, $x=42$ and $x=-3 \mathrm{~km} / \mathrm{h}$.
speed cannot be negative,
therefore original speed of the train is $42 \mathrm{~km} / \mathrm{h}$. Ans
27. Let $A B$ be the flagstaff and $B C$ be the tower.

Also let distance between point and tower be x.
In $\triangle B C P, \tan \alpha=\frac{B C}{x}$
Or, $x=\frac{B C}{\tan \alpha}$
In $\triangle \mathrm{ACP}, \tan \beta=\frac{A C}{x}=\frac{A B+B C}{x}=\frac{h+B C}{x}$

Or, $\mathrm{h}+\mathrm{BC}=x \tan \beta$
So, $\mathrm{h}=\frac{B C}{\tan \alpha} \tan \beta-\mathrm{BC}=\frac{B C \tan \beta-B C \tan \alpha}{\tan \alpha}$
$\mathrm{h} \tan \alpha=\mathrm{BC}(\tan \beta-\tan \alpha)$
$\therefore \mathrm{BC}=\frac{h \tan \alpha}{\tan \beta-\tan \alpha}$ Proved

Choice

Let $A B$ and $C D$ be the towers and the distance between the towers be $x \mathrm{~m}$.
In $\triangle A B D, \tan 60^{\circ}=\frac{A B}{B D}=\frac{30}{x}$
$\Rightarrow \sqrt{ } 3=\frac{30}{x}, x=\frac{30}{\sqrt{3}}=10 \sqrt{ } 3$
\therefore distance between towers $=10 \sqrt{3} \mathrm{~m}$ Ans

In $\triangle C D B, \tan C D B, \tan 30^{\circ}=\frac{C D}{D B}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{h}{x}=\frac{h}{10 \sqrt{3}} \Rightarrow \mathrm{~h}=10 \mathrm{~m}$
Thus, height of the other tower $=10 \mathrm{~m}$ Ans
28. $\mathrm{AB}^{2}=\mathrm{AE}^{2}+\mathrm{BE}^{2}$
$=A E^{2}+(B D-D E)^{2}$
$=\mathrm{AE}^{2}+(\mathrm{CD}-\mathrm{DE})^{2}$
$=\mathrm{AE}^{2}+\mathrm{CD}^{2}+\mathrm{DE}^{2}-2 \mathrm{CD} \cdot \mathrm{DE}$
$=\mathrm{AD}^{2}+\mathrm{CD}^{2}-\mathrm{BC} . \mathrm{DE}$
$=\mathrm{AD}^{2}+\left(\frac{1}{2} \mathrm{BC}\right)^{2}-\mathrm{BC} . \mathrm{DE}$
$=\mathrm{AD}^{2}-\mathrm{BC} \cdot \mathrm{DE}+\frac{1}{4} \mathrm{BC}^{2}$ Prowed
29. Radius of each part $=5 \mathrm{~cm}$

Slant height of cone, $l=\sqrt{h^{2}+r^{2}}=\sqrt{(12)^{2}+(5)^{2}}=13 \mathrm{~cm}$

CSA of toy $=$ CSA of hemisphere + CSA of cylinder + CSA of cone

$$
\begin{aligned}
& =2 \pi(5)^{2}+2 \pi(5)(13)+\pi(5)(13) \\
& =\pi[50+130+65]=\frac{22}{7}[245]=720 \mathrm{~cm}^{2} \text { Ans }
\end{aligned}
$$

30.

Class	Class Mark $\left(\mathbf{x}_{\mathbf{i}}\right)$	Frequency $\left(\mathbf{f}_{\mathbf{i}}\right)$	Cumulative Frequency	$\mathbf{f i x}_{\mathbf{i}}$
$5-15$	10	2	2	20
$15-25$	20	3	5	60
$25-35$	30	5	10	150
$35-45$	40	7	17	280
$45-55$	50	4	21	200
$55-65$	60	2	23	120
$65-75$	70	2	25	140
$\sum f_{i}=25$				

(i) Mean, $\bar{X}=\frac{\sum f_{i} x_{i}}{\sum f_{i}}=\frac{970}{25}=38.8$ Anc
(ii) Finding Median: $\frac{n}{2}=\frac{25}{2}=12.5 \Rightarrow$ median class is $(35-45)$

Median $=l+\frac{\frac{n}{2}-c f}{F} \times h=35+\frac{12.5-10}{7} \times 10=38.57$ Ans
(iii) Finding Mode:

Highest frequency is of class $(35-45) \Rightarrow$ modal class is $(35-45)$
Mode $=l+\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}} \times \mathrm{h}=35+\frac{7-5}{14-5-4} \times 10=39$ Ans

[^0]: Address: Nimbalkar's Goth - 2, Near Balaji Travels Office, Kampoo

